第四次世界大戰

愛因斯坦的相對論推導出質動等價方程E=mc^2,發現物質的質量蘊含巨大能量。莉澤.邁特納以此解釋奧圖.漢的實驗數據,原子核分裂前後總質量不相等,因而發現核反應能夠釋放能量,後世稱她為原子能之母。

二次大戰,愛因斯坦寫信敦促羅斯福總統製造原子彈。最終,美國展開曼哈頓計劃,先於納粹德國造出原子彈,並投下於日本廣島和長埼,使兩座城市被夷為平地,終結了戰爭。

細小的原子竟然能夠釋放出如此巨大的能量,舉世震驚。愛因斯坦得知廣島被毀,驚訝得說不出話來,心情良久才平靜下來,說:「早知如此,我寧可當個鐘錶匠。」

當然,問題並不在於愛因斯坦發現質能等價、不在於誰向羅斯福進言、不在於原子能的應用,亦不在於造出原子彈的人。科學無分好壞,問題在於擁有科技的人如何使用。曼哈頓計劃的粒子物理學家Kenneth Bainbridge目睹原子彈試爆後說:「Now we are all sons of bitches.」

曼克頓計劃中,費曼負責帶領一隊美國頂尖高中生進行原子彈爆炸的理論計算。他回憶道,戰後他過了一段時間才發覺自己有份造出史上最恐怖的武器。他看著街上的修路工人,心想:「還建設什麼?一切都徒勞無功。」他以為世界很快就會毀滅於核戰之中。

後來,有位記者問愛因斯坦:「第三次世界大戰會用什麼武器來打?」愛因斯坦答道:「我不知道第三次世界大戰會用什麼武器來打,但我知道第四次世界大戰會用石頭和木棍來打。」

愛因斯坦的回答常被用來說明核武器的恐怖。但我覺得,愛因斯坦預言會發生第四次世界大戰,才最令人不寒而慄。愛因斯坦看穿人類不會從歷史中學習,認為即使經歷毀滅文明的核戰爭,人類仍會繼續互相殘殺。

核戰爭之所以從未(仍未?)發生,是基於所謂的「確保互相毀滅」原則:擁有核武的雙方都深明對方能夠毀滅自己,而且雙方都沒有能力防禦。因此只要其中一方發射核彈,雙方都必定毀滅。由於雙方都不願被毀,雙方就都不會使用核武。這也是博弈論中的一種平衡點:正因為知道能夠互相毀滅,所以才不會互相毀滅。

但這種平衡,只在雙方皆擁有毀滅對方的能力,以及無法防禦對方攻擊的條件下,才有可能成立。如果其中一方有著壓倒性的武力優勢,而且沒有自我約束的能力的話,毀滅另一方就很自然變成「Why not?」歷史上這情況累見不鮮,問題不是會不會發生,而是何時發生。

現實非理論,並不只有兩個完全敵對的陣營,因此政治往往很難預測。在這充滿變數的世代,我們只能做好應做的事、出應出的力,不放棄,希望可以保存性命,有天會看見曙光。

圖:1946年7月1號《時代雜誌》封面。

人類首次拍得黑洞照片 再證愛因斯坦廣義相對論

黑洞帶給人類永恆的神秘感,它是時空的盡頭、連光也擺脫不了的「洞」。即使是理論物理學家,也難以用筆墨形容黑洞的模樣。要派太空人到黑洞附近去看看也不太可能,儘管航行者1號、2號花了近40年,才剛在不久前越過太陽系邊界,但黑洞都在太陽系以外非常遙遠的地方。

2017年,來自世界各地超過60個科研單位的天文學家聯結起位於地球各大洲的眾多個無線電望遠鏡,持續地觀察M87星系。這個名為事件視界望遠鏡(Event Horizon Telescope,簡稱EHT)的無線電望遠鏡網絡,終於直接拍攝到了人類史上首張黑洞「照片」,並於2019年4月10日全球同步發表。

圖1 M87星系。(Image courtesy of ESO)

黑洞是什麼?

黑洞是愛因斯坦於1915年發表的廣義相對論的方程式的一個數學解。愛因斯坦發現,在我們身處的宇宙中的任意點上,加速度與重力並不能被區分開來,是為「等效原理」。利用等效原理,加上光速不變假設,愛因斯坦推導出一組十式的方程組。廣義相對論取代了牛頓重力定律(或者可說是牛頓重力定律的更新版本),只要知道時空某處存在多少質量,就能夠利用那十條方程式描述時空的演化。

重力的特性是它只會互相吸引,不像電磁力那樣既能相吸亦能相斥。因此,質量越多,重力就越強;重力越強,就更輕易吸引更多物質。物質如果要擺脫更強的重力,就得付出更多能量。例如,在一顆小行星上,輕輕一跳可能就已足夠擺脫其重力;在地球上,卻必須利用火箭加速至最少每秒11.2公里,才能飛進宇宙空間。

早在愛因斯坦以前,物理學家就曾經想像過一顆質量非常高的恆星,其重力強大到必須跑得比光更快才能逃逸。牛頓重力理論中沒有質量的東西不會被重力影響,而光線究竟有沒有質量在當年也是未解之謎,他們想像「如果」光線也會被重力「拉」回恆星表面的情況,就把這種想像中的恆星稱為「暗星」。

Supermassive black hole with torn-apart star (artist’s impress
圖2 畫家想像下的黑洞。(Image courtesy of ESO, ESA/Hubble, M. Kornmesser/N. Bartmann)

廣義相對論中的重力卻能影響一切事物。所有物質,哪管有沒有質量,全都會被重力吸引。天體物理學家發現,當一顆質量巨大的恆星耗盡核反應燃料時,抵抗自身重力的壓力就會在一瞬間消失,恆星會向內坍縮、反彈,引發超新星爆發。超新星爆發後剩下來的核心質量如果足夠高,就會變成一個逃逸速度比光速更高的區域。我們叫它做黑洞。

黑洞不會發光,而且大多數黑洞體積又不大、離地球又遠(幸好)。因此,望遠鏡必須造得夠大,才能收集更多光線和提高解析度。以人類的科技,要探測上述由恆星死亡超新星爆炸所創造出來的細小黑洞(尺寸大多比地球上的城市更小),仍然遙不可及。不過,宇宙間有些黑洞尺寸卻巨大得難以置信。天文學家發現,在每個星系的中心,都存在一個極其巨型的黑洞,質量達到幾百萬個太陽,稱為超大質量黑洞。天文學家認為這些星系中心的黑洞由遠古細小黑洞互相結合而成的,它們同時也影響著星系的演化過程。

星系M87(Messier 87)的中心也有一個超大質量黑洞。它距離太陽系約5千5百萬光年,半徑約為37光時。M87的質量是太陽的65億倍,從地球上觀察,它的事件視界(event horizon)只有大約16微角秒。從地球看,這等於月球上太空人的拳頭大小。事實上,今次EHT的天文學家拍攝的並非M87的事件視界,而是在事件視界外面約40微角秒大小的吸積盤(accretion disk),叫做「黑洞的影子(black hole shadow)」,實際尺寸大概為冥王星軌道的2.7倍。

The-VLBI-network-of-the-Event-Horizon-Telescope-courtesy-EHT-team
圖3 事件視界望遠鏡網絡。(Image courtesy of EHT; from Jean-Pierre Luminet, La Recherche, Vol. 533 (March 2018), https://arxiv.org/abs/1804.03909

事件視界望遠鏡(EHT)是什麼?

根據簡單光學定律,望遠鏡越巨大、觀測使用的波長越短,解析度也越高。人類所造的地面望遠鏡之中,無線電望遠鏡建造相對容易,因此普遍來說都較可見光望遠鏡巨大。另一方面,無線電受大氣擾動干擾的影響亦較可見光為低。EHT使用的無線電波段為1.3毫米,經過計算,我們需要的望遠鏡尺寸是⋯⋯地球直徑(即大概13,000公里)!

然而,即使是地球上最巨型的無線電望遠鏡,例如美國的阿雷西博望遠鏡(Arecibo Telescope,直徑305米)、中國的500米口徑球面無線電望遠鏡(Five-hundred-meter Aperture Spherical radio Telescope,簡稱FAST,直徑500米),以及俄羅斯的科學院無線電望遠鏡-600(Academy of Science Radio Telescope – 600,簡稱RATAN-600,直徑600米)等等,也遠遠不夠大。怎麼辦呢?總不能把整個地球改建成一支望遠鏡吧?幸好,物理學家早就發展出一種技術,叫做甚長基線干涉測量法(Very-long-baseline Interferometry,簡稱VLBI)。VLBI技術利用光線的波動特性,把不同地點的光線訊號互相重疊,從而構成更光亮、解析度更高的影像。

世界各地都有很多無線電望遠鏡,因此天文學家組成了一個VLBI望遠鏡網絡,用來加強所拍攝的影像的光度和解析度。EHT就是這個VLBI網絡的一部分,專門拍攝M87。過去兩年間,EHT收集到了足夠的光線,利用干涉分析建構出一幅解析度達20微角秒、足以分辨出M87的黑洞影子的照片。2019年4月10號,我們終於能夠一窺黑洞的廬山真面目!

圖4 EHT首張M87的無線電黑洞影子照片。(Image courtesy of EHT)

不發光的黑洞為什麼可以看得到?

咦,不是說過連光也不能離開黑洞嗎?為什麼還會有來自黑洞的訊號?

黑洞本身不會發光(理論上黑洞會放出所謂的霍金輻射(Hawking radiation),但這超出本文討論範疇,我在以往文章中已經討論過)。然而,正被黑洞吸入的星際物質、甚至是被黑洞強大重力扯得支離破碎的恆星碎片,會一邊加速至極高速度、一邊落入黑洞之中。這些物質構成一個溫度極高的吸積盤,會在落入黑洞之前釋放出大量輻射。EHT觀察的就是這些剛好在黑洞邊界發射出來的光。

順帶一提,黑洞邊界是時空中的資訊能夠傳播的最後界線,跨越了黑洞這道邊境的任何資訊都不可能被黑洞外面的宇宙所探知。因此,黑洞邊界又稱為事件視界,象徵宇宙中一切事件的盡頭。EHT的名稱也就很明顯了:事實上它拍攝的並非黑洞「本身」,而是事件視界外的黑洞影子。

愛因斯坦的預言

既然這是人類史上首張黑洞照片,為什麼我們會知道M87中心有個黑洞?

我們觀察到來自M87的X射線高能量噴流(jet)。天體物理學模型指出,當吸積盤的物質落入黑洞時,會有一部分物質被高速從黑洞兩極拋走,形成噴流。噴流中的物質溫度極高,加上其速度非常接近光速,因而放出X射線。這些來自M87的X射線能量間接指出其中心必定存在一個能提供物質如此強大能量的能源。根據人類已知物理學,黑洞是唯一解釋。

科學與其他學問的一個分別是,我們能夠利用科學定律來作出極其準確的量化(quantitative)預言。愛因斯坦廣義相對論的預言已經被實驗和觀測所一一證實,包括位於較強重力場中的時間流逝速率相對較慢(全球定位系統人造衛星必須使用廣義相對論作岀修正,所以我們的手提電話已是明證)、空間會被重力場扭曲(人造衛星已經測得地球附近空間扭曲程度與相對論預言一致)、2015年直接探測到去兩個黑洞碰撞結合所釋放出的重力波(重力波觀測亦為黑洞存在的證據)。

EHT這張照片只是人類直接觀察黑洞的第一步。雖然這照片與想像中的電影劇照有頗大出入,卻是愛因斯坦相對論的另一個明證。誰知道未來人類科技會進步到何等程度,帶我們看到什麼?

651486.png

圖5 電影《星際啟示錄(Interstellar)》顯示的黑洞。由該電影科學顧問、2017年諾貝爾物理學奬得主、理論天體物理學家基普・索恩(Kip S. Throne)利用廣義相對論方程組畫出。

本文作者感謝江國興教授的建議。

延伸閱讀:

EHT新聞稿:https://eventhorizontelescope.org

EHT製作的動畫:https://youtu.be/hMsNd1W_lmE

相對論、量子力學、黑洞和反物質

費曼與愛因斯坦的小故事

我為各位講兩則科學家小故事:

有一次,費曼訪問歐洲核子研究機構(CERN)。

工作人員帶費曼去看巨大的粒子對撞機。費曼問:「這些機器用來做什麼的?」

工作人員說:「費曼教授,這些機器是用來驗證你的理論的!」

「花了多少錢?」

「3千7百萬美元。」

費曼笑說:「你們這麼不相信我的理論嗎?」

1919年,當愛因斯坦的學生告訴他,愛丁頓在日全食觀測裡找到了驗證廣義相對論的證據,愛因斯坦說:「我就早知道了。」

學生追問:「但萬一結果是不相符呢?」

「那麼,我會為上帝感到惋惜。我的理論是正確的。」

我們會問,科學家不是應該謙虛謹慎的嗎?為什麼費曼和愛因斯坦會說出如此大口氣的說話呢?

當然,一部分原因是因為科學家也是人,也會對事物有個人喜好。兩個故事裡,我們看出費曼和愛因斯坦都對自己的理論有相當信心。

然而,他們的信心並不是純粹個人喜好。他們的信心是基於兩個非常重要的特點:

(一)他們知道他們提出的理論能夠解釋所有過往實驗和觀測數據;

(二)他們的理論能夠對未來更精密的實驗和觀測作出預言。

這兩個理由,可說就是科學精神的精髓。另外,理論在數學結構上的「美」很多時候亦是科學家對理論產生一定信心的原因。

最重要的是,在面對非常龐大和堅實的實驗或觀測結果與理論不相符時,科學家不會堅持理論正確,反而會第一時間拋棄自己的理論。對科學家來說,最重要的不是自己永遠正確。最重要的,是我們能看見更多大自然的美。

如果有一天我們發現費曼或愛因斯坦是錯誤的,我相信他們不會覺得氣餒,反而會說:「我不明白,但很有趣。」

就像門得列夫說的:「很好,那麼我們繼續工作。」

封面圖片:《漫畫費曼

萬聖節科學

兩年前,我寫過一篇文章討論鬼可不可能在已知物理定律下存在,引起了一點迴響。其中有人讚同我的看法,也有人說我不應以科學去解釋鬼。

鬼存在與否,對作為物理學家的我來說,就如同傳播光線的介質「以太」存在與否的問題。愛因斯坦獨力完成廣義相對論,時至百年後今天仍能以其重力波的預言使諾貝爾獎委員會頒出奬項,舉世無雙。光線的速度是馬克士威電磁波動方程的解——秒速三十萬公里,而相對論則說這個數字永不改變。光以這個速度跟隨與質量互動的時空行進,無需介質。

如果硬要往宇宙塞進一種看不見、與宇宙中所有粒子都沒有交互作用的介質,會違反物理嗎?不會。如果硬要往宇宙塞進一種看不見、與宇宙中所有粒子都沒有交互作用的叫做鬼的「東西」,會違反物理嗎?也不會。

(抱歉,鬼不可能是「能量」,因為質能等價,能量亦可被測量)

有把科學剃刀,專門剃走這種沒有作用、多此一舉的「理論」,而事實上這些「理論」連科學假設的程度也達不到。這就好比我說有種完全透明、不能被任何實驗探知的獨角獸存在,更要求把這種獨角獸加入生物學課本裡。這把剃刀的作用,就是幫助我們分別現實和幻想。

我經常強調科學家並非沒有感情的生物。相反,我認為科學家的感情非常豐富,否則怎麼可能會覺得數學公式很美麗、被邏輯推理結果感動到落淚?我相信大部分科學家與你我一樣,都會被牆上的蛇影嚇到,亦會不敢獨自在夜深裡看鬼片。

對未知事物的恐懼,並加以超越現有知識的解釋,是人類演化的結果。我們不難想像,恐懼黑暗中的幽靈,有助我們遠離可能的危險,有利於物種繁衍。而科學卻告訴我們,哪裡沒有鬼怪,不過卻可能有野獸。兩者分別在於,科學能幫助我們找出解決方法,而怪談則使人不敢前進。

科學,某種程度上來說是違反人性的。正因如此,我們才更應重視科學,因為科學使我們面對自己內心的恐懼。我們恐懼鬼怪、恐懼黑暗、恐懼無知。戰勝害怕鬼怪的心魔,可能只需要勇氣;而戰勝黑暗中的野獸,除了勇氣,你更需要一支火把。

當然,如果你真的發現有鬼,煩請把我的聯絡方法交給他,好讓我的臉書專頁多些來自不同次元的讚之外,也能拍部新人鬼情未了電影,寫篇跨越人鬼界線的論文,屆時獲得諾貝爾獎,一定邀請你來觀禮。

封面圖片:Fermilab/Anatoly Evdikomov

方程是永恆:愛因斯坦(Albert Einstein)

1879年,愛因斯坦出生於德國南部小鎮烏姆(Ulm)。1880年,他隨家人搬到慕尼黑(München)。與一般印象相反,愛因斯坦小時候因為鮮少說出完整句子,父母曾以為他有學習障礙。

愛因斯坦在慕尼讀中學。他非常討厭德國學校著重背誦的教育方式,課堂上總自己思考問題,不專注聽課,所以經常被老師趕出班房。1894年,愛因斯坦15歲,他父親赫爾曼・愛因斯坦(Hermann Einstein,1847-1902)在慕尼黑的工廠破產,迫使舉家遷往意大利帕維亞(Pavia),留下愛因斯坦在慕尼黑完成中學課程。同年12月,愛因斯坦以精神健康理由讓學校準許他離開,前往帕維亞會合家人。

這次出走改變了愛因斯坦的一生,甚至可說改變了人類文明的科學發展。

愛因斯坦不懂意大利語,不能在帕維亞上學。他早有準備,前往瑞士德語區蘇黎世(Zürich)投考蘇黎世聯邦理工學院(Eidgenössische Technische Hochschule Zürich,通常簡稱ETH Zürich)。結果愛因斯坦數學和物理學都考得優異成績,但其他科目如文學、動物學、政治和法語等等卻全部不合格。

蘇黎世聯邦理工學院給予愛因斯坦一次機會,著他到附近小鎮阿勞(Aarau)去完成中學課程,明年再考。在這段期間,愛因斯坦暫住在斯特・溫特勒教授(Jost Winteler,1846-1929)家中。愛因斯坦很喜歡開明、自由的溫特勒教授一家,利用這一年溫習各科目,更與溫特勒的女兒瑪麗・溫特勒(Marie Winteler,1877-不詳)相戀。

瑞士的教育方式與德國的不相同,並不強調背誦。瑞士學校老師非常鼓勵學生發表意見,不會以權威自居,這一點與討厭權威的愛因斯坦非常合得來。愛因斯坦曾於寄給溫特勒的信中寫道:「對權威不經思索的尊重,是真理的最大敵人。」[1]他稱自己為世界主義者,不喜歡德國日漸升溫的國家主義。溫特勒教授就幫助愛因斯坦放棄德國國籍,愛因斯坦因而成為了無國籍人士,他很喜歡這個「世界公民」身份。

一年後,愛因斯坦再次投考蘇黎世理工學院。物理、數學當然成績優異,其他科目亦合格,愛因斯坦順利被取錄入讀物理學系。然而,他父親卻期望他進入工程學系,將來繼續家族工廠,因此他們大吵了一場。

愛因斯坦大學時繼續他我行我素的性格,經常逃課去上其他科目的課堂,所以都要他的同學們幫他抄筆記,他才知道考試範圍。加上愛因斯坦以刺激權威為樂,教授們都不喜歡這個又煩又懶的學生,不願意幫他寫好的推薦信,所以他畢業後一直找不到工作。

在學時,愛因斯坦與物理系唯一一個女同學米列娃・馬利奇(Mileva Marić,1875-1948)相戀。根據膠囊資料顯示,愛因斯坦與米列娃的書信中曾提到他們有個女兒叫麗瑟爾。不過後來他們就再沒提到她,歷史學家估計麗瑟爾出生不久就死於猩紅熱。愛因斯坦與米列娃在1903年結婚,之後他們生了兩個兒子——大子漢斯和二子愛德華。他們最終在1914年分居,1919年離婚。

愛因斯坦於1900年畢業,取得了教學文憑。可是,由於教授們都不喜歡愛因斯坦,他申請大學職位的申請信全都石沉大海。愛因斯坦非常沮喪,以致他父親於1901年寫信給威廉・奧斯特瓦爾德教授(Wilhelm Ostwald,1853-1932,1909年諾貝爾化學獎得主)請求他聘請愛因斯坦當助手,或者至少寫給愛因斯坦鼓勵說話。當愛因斯坦快要連奶粉錢也不夠的時候,他大學時的舊同學格羅斯曼・馬塞爾(Grossmann Marcell,1878-1936)[2]的岳父以人事關係幫他在瑞士專利局找到了一份二級專利員的工作,愛因斯坦才度過難關。

愛因斯坦喜歡在早上就把所有工作做完,利用整個下午在辦公桌上思考物理問題。一個從學生時代就已令他著迷的問題就是:如果他能夠跑得和光一樣快,會看到什麼?

詹士・馬克士威(James Clerk Maxwell,1831-1879)的電磁學方程組說明光線就是電磁場的波動,而電磁波亦已被亨里希・赫茲(Heinrich Hertz, 1857-1894)的無線電實驗證明存在。科學家認為,既然光是波動,就跟所有其他波動一樣需要傳播媒介:聲波需要粒子、水波需要水份子,而光需要「以太」才能在宇宙直空中傳播。

愛因斯坦於1905年發表狹義相對論。在這之前牛頓的絕對時空觀早已令科學界困擾多年。著名的邁克遜—莫雷實驗結果與牛頓力學速度相加法則相違背[3]。無論地球公轉到軌道的哪個位置,無論實驗儀器轉向哪個方向,光線都相對以太以同樣秒速30萬公里前進,分毫不差。這就好像下雨時無論向哪個方向跑,雨點總是垂直落在我們的頭頂。難道雨點知道我們跑步方向,故意調整落下角度嗎?

光速不變概念非常革命性。因為光速不變,在我們眼中同時發生的兩件事,其他人看起來卻不一定同時。時間與空間有微妙關係,兩者結合在一起成為時空。當年大部分科學家都認為問題必然出在馬克士威電磁方程式,但愛因斯坦卻不這麼想。他認為,我們常識中對「同時」的理解根本有誤。不過,愛因斯坦並非以力學切入這個問題,而是思考一個著名的電磁現象:法拉第電磁感生效應。

法拉第電磁感應定律指出,移動的帶電粒子會同時產生電場與磁場,靜止的帶電粒子則只會產生電場,沒有磁場。但相對論說宇宙並沒有絕對空間,速度只有相對才有意義。而物理現象必須是唯一的,所以我們就有個問題:究竟有沒有磁場存在?把電磁鐵穿過線圈,我們可以做以下三個實驗:

(一)固定電磁鐵,移動線圈;
(二)固定線圈,移動電磁鐵;
(三)固定線圈及電磁鐵,改變磁場強度。

實驗結果:三個實驗之中都有電流通過線圈,而且數值完全一樣!

我們可以從實驗結果得出甚麼結論?基於完全不同的物理過程,實驗(一)與實驗(二)和(三)得到相同的電流。實驗(一)產生電流的是磁場,而實驗(二)和(三)產生電流的卻是改變的磁場所感生的電場。嚴格來說,實驗(一)的結果並非法拉第定律,因為法拉第定律所指的是磁場感生電場。正是這區別令愛因斯坦得到靈感,他在論文中說這個現象顯示無論是電動力學與力學,根本不存在絕對靜止這回事。

愛因斯坦預期相對論會在科學界引起廣泛討論,結果卻是異常安靜。愛因斯坦突然拋棄了物理「常識」,此舉令科學界摸不著頭腦。馬克斯・普朗克(Max Karl Ernst Ludwig Planck,1858-1947,1918 年諾貝爾物理奬得主)可能是唯一一個明白相對論重要性的人,他讀到論文後寫過信去問愛因斯坦解釋清楚一些理論細節,更派馬克斯・馮勞厄(Max von Laue,1879-1960,1914 年諾貝爾物理奬得主)去拜訪愛因斯坦。馮勞厄發現愛因斯坦竟然不是大學教授,而是瑞士專利局裡的小職員。回家路上,愛因斯坦送給馮勞厄一支雪茄,馮勞厄嫌品質太差,趁愛因斯坦不為意從橋上把雪茄丟了下去。

愛因斯坦導出那舉世聞名的質能關係方程式E=mc2,解釋了放射性同位素輻射能量來源和太陽能量來源。不過愛因斯坦後來在1921年獲頒的諾貝爾物理學獎並非因為相對論,而是因為他應用普朗克的量子論解釋了光電效應。

愛因斯坦並沒有滿足於狹義相對論。狹義相對論只適用於慣性坐標系,可是宇宙裡絕大部份坐標系都是非慣性的,例如地球就是個加速中的坐標系。愛因斯坦知道必須找出一個新理論去解釋加速坐標系中的運動定律。他幾乎是獨力地與新發展的數學分支「張量分析」在黑暗之中搏鬥了十年之久,最後才於1915年11月完成廣義相對論。我們已經觀賞過的宇宙大爆炸,都遵守廣義相對論的方程式。

愛因斯坦尋找正確的廣義相對論公式期間,米列娃與愛因斯坦的關已經變得非常惡劣,而且愛因斯坦的母親非常不喜歡他倆的婚姻,米列娃她就在1914年帶著兩個孩子離開他們的家柏林,到瑞士去了。與孩子分離使愛因斯坦非常傷心,因為他堅持留在德國做研究。不過,他與後來第二任妻子、表妹愛爾莎・愛因斯坦(Elsa Einstein,1876-1936)[4]的曖昧關係已經一發不可收拾。

我們穿越時間來到了1915年11月底,愛因斯坦就快發現能夠描述整個宇宙的新理論了。狹義相對論裡時空是平的,並且所有慣性坐標系都是等價的。廣義相對論描述的是更廣泛的彎曲時空,它能描述所有坐標系。只要指定一套時空度規、給定能量與物質密度分佈,就能夠計算出時空曲率如何隨時間改變。相對論大師約翰・惠勒(John Archibald Wheeler,1911-2008)曾說:「時空告訴物質如何運動;物質告訴時空如何彎曲。」[5]

狹義相對論改正了以往區分時間與空間的常識,而廣義相對論則把萬有引力描述成時空曲率,連光線也會被重力場彎曲,再次顛覆了常識。我們只需要把一組十式的愛因斯坦場方程式配合相應時空度規,任何宇宙的過去與未來都能夠計算出來。

當然很多人質疑廣義相對論的正確性,因為科學理論必須接受實驗驗證。終於在1919年,英國天文學家亞瑟・愛丁頓(Sir Arthur Stanley Eddington, 1882-1944)來到西非畿內亞灣普林要比島(Principe)以日全食觀測結果驗證了廣義相對論。1919年5月29日早晨,下著傾盆大雨。幸好到了下午1時30分雨停了,不過還有雲。愛丁頓努力拍攝了許多照片,希望能夠拍到太陽附近的星光偏折。最後結果出來了:在拍得的照片中,有一張與愛因斯坦的預測數值吻合。其實在科學裡,一個證據並不足以支持一個理論,但愛丁頓是個廣義相對論狂熱擁護者,他立即對外公佈廣義相對論已經被證實了。

廣義相對論場方程式顯示,宇宙若不是正在收縮就是正在膨脹。我們已經知道,當年愛因斯坦認為宇宙永遠存在,因此他在場方程式裡加入了宇宙常數,用來抵消重力,使宇宙變得平衡,不會擴張也不會收縮。但這樣的宇宙極不穩定,只要非常細微的擾動,宇宙就會膨脹或收縮。就好像把一個保齡球放在筆尖上,理論上保齡球可以停在筆尖上,但只要一點點風就能使保齡球滾下來。

不過,這個常被人說成是愛因斯坦一生最大錯誤的宇宙常數,其實的確存在。錯有錯著,歷史再次證明愛因斯坦正確,儘管這並非愛因斯坦的原意。1929年,愛德溫・哈勃(Edwin Hubble,1889-1953)發現星系正在遠離地球,而且越遙遠的星系後退的速度就越快。這只能有兩個解釋:要麼地球是宇宙的中心、要麼宇宙正在膨脹。當愛因斯坦知道哈勃的發現後,他後悔在廣義相對論方程式裡加入了人為的宇宙常數[6]。

今天,科學家已經發現宇宙不單正在膨脹,而且膨脹正在加速。暗能量、或者宇宙常數,因而在上世紀末重新復活。一個正在加速膨脹的宇宙,比一個靜止的宇宙需要更巨大的宇宙常數。而且事實上,即使有宇宙常數,宇宙亦不可能靜止。

愛因斯坦在第二次世界大戰時,因為擔心納粹德國會製造出原子彈,所以他曾寫信致羅斯福總統要求美國搶先研究製造原子彈。到戰後才發現,當時的德國根本無法造出原子彈,因為大多數的科學家已經被希特拉趕走了。那天早上,當愛因斯坦聽到原子彈已經把日本廣島夷為平地,他就呆坐在家,久久未能平復心情。從此以後,愛因斯坦極力主張廢除核武,導致他被50年代著名的FBI胡佛探長(John Edgar Hoover,1895-1972)認為他是共產黨間諜。理所當然,胡佛始終無法找到任何證據捉拿愛因斯坦。

愛因斯坦因以普朗克的光量子概念解釋了光電效應而獲得1921年諾貝爾物理獎。光電效應論文證明了光同時是波動和粒子,稱為光的波粒二象性,是量子力學的基本原理。不過,儘管量子力學和廣義相對論的所有預測都未曾出錯,兩者卻互不相容。現在的科學家十分清楚:要不是量子力學是錯的、或廣義相對論是錯的、或兩者都是錯的。

愛因斯坦於1923年7月11號在瑞典哥德堡舉行的Nordic Assembly of Naturalists會講上講了他的諾貝爾獎講座。雖然他得到的是1921年諾貝爾獎,可是因為諾貝爾奬委員會認為在1921年的提名名單中沒有人能夠得獎,跟據規則該年度之獎項順延至下一年頒發,所以愛因斯坦實際於1922年得到1921年的諾貝爾獎。而由於在1922年諾貝爾獎頒獎典禮舉行時愛因斯坦正在遠東旅行,直到1923年愛因斯坦才在哥德堡講出他的諾貝爾奬講座。順帶一提,愛因斯坦獲頒諾貝爾獎不久之前,他正在香港。

愛因斯坦雖然有份為量子力學打下基礎,後來卻變得不相信量子力學,例如他與兩個物理學家共同提出的愛因斯坦—波多爾斯基—羅森悖論[7]就是為了推翻量子力學的。可是,科學家後來發現愛因斯坦—波多爾斯基—羅森悖論的假設「局域性」是錯的。廣義相對論認為宇宙是「局域」的,只有無限接近的兩個點才能有因果關係,因此推翻了牛頓重力理論中的「超距作用」。但量子力學卻說,兩個相距非常遠的粒子也能夠互相影響,因此量子力學與廣義相對論的假設是不相容的。

愛因斯坦一生都在尋找量子力學的錯處,結果是一個都找不到。他晚年一直在研究統一場論,希望統一電磁力和重力。不過,在他死前,人類並不知道除電磁力和重力以外還有強核力和弱核力。所以愛因斯坦根本沒有足夠的資訊去進行統一場論的研究,歷史注定要他失敗。

愛因斯坦一生對金錢、物質、名譽等不感興趣,他喜愛的東西大概可說只有物理和女人。他希望找出大自然的終極奧秘,並以優美、永恆不變的數學方程式表達出來。愛因斯坦覺得「政治只是一時,方程式卻是永恆。」[8]愛因斯坦聲稱自己並不擅長政治,但他在一生中卻經常對種族平等、世界和平等政治大議題作公開演講。因此他也引來許多人對他的政治立場表達不滿。

當以色列的第一任總統哈伊姆・魏茲曼(Chaim Azriel Weizmann,1874-1952)於1952年逝世時,以色列官方曾邀請愛因斯坦擔任第二任總統。最後,愛因斯坦寫了一封回信感謝並婉拒。

1955年4月18號,愛因斯坦在撰寫祝賀以色列建國七週年的講稿中途逝世。他生前堅拒以人工方法勉強延長生命,他說:「當我想要離去的時候請讓我離去,一味地延長生命是毫無意義的。我已經完成了我該做的。現在是該離去的時候了,我要優雅地離去。」[9]

[1]”Autoritätsdusel ist der größte Feind der Wahrheit.” The Private Lives of Albert Einstein (1993), p. 79.

[2]格羅斯曼在愛因斯坦建立廣義相對論期間幫助愛因斯坦解決數學上的問題,可說是廣義相對論的促進者。注意格羅斯曼是匈牙利人,名稱習慣先姓後名,所以格羅斯曼是他的姓,馬塞爾才是他的名。

[3]邁克遜—莫雷實驗是阿爾伯特・邁克遜(Albert Abraham Michelson, 1852-1931)和愛德華・莫雷(Edward Morley, 1838-1923)在1887年合作做的實驗,測量地球在以太參考系裡的速度。

[4]原名愛爾莎・路文塔爾(Elsa Löwenthal)。

[5]”Spacetime tells matter how to move; matter tells spacetime how to curve.” Geons, Black Holes, and Quantum Foam (2000), p. 235.

[6]流傳愛因斯坦說過這是他「一生中最大的錯誤」的故事應該是假的。

[7]愛因斯坦—波多爾斯基—羅森悖論是愛因斯坦、鮑里斯・波多爾斯基(Boris Podolsky,1896-1966)、納森・羅森(Nathan Rosen,1909-1995)於1935年合寫的一篇論文中的思想實驗,希望證明量子力學自相矛盾。

[8]”… politics are only a matter of present concern. A mathematical equation stands forever.” Brighter than a Thousand Suns: A Personal History of the Atomic Scientists (1958), p. 249.

[9]”I want to go when I want. It is tasteless to prolong life artificially. I have done my share, it is time to go. I will do it elegantly.” The ruptured abdominal aortic aneurysm of Albert Einstein, Surgery, Gynecology & Obstetrics, 170 (5): 455-8.

延伸閱讀:
淺談 E=mc^2:愛因斯坦 137 歲誕辰
拋開常識的學者:愛因斯坦 (Albert Einstein)

相對論、量子力學、黑洞和反物質

愛因斯坦發表相對論至今已超過 100 年。百年之間,無數科學家使用各種方法檢驗相對論,所有結果都與愛因斯坦寫下的方程式的結果吻合,從未出錯。

䇄立不倒的相對論

自邁克生(Albert Michelson)與莫雷(Edward Morley)在 1887 年做的光干涉實驗驗證了狹義相對論的假設,到 2015 年位於美國的兩座激光干涉重力波天文台(LIGO)直接探測到廣義相對論預言存在的重力波,愛因斯坦的相對論的所有預言已全被實驗和天文觀測驗證。無獨有偶,這兩個發現同樣都基於光干涉實驗,巧合呼應愛因斯坦發現相對論之前所作的光線騎士思想實驗。

不過,這並不代表在未來不會發現相對論出錯。牛頓力學在很多情況仍然適用,例如計算太空探測器的軌道並不需要使用相對論。在需要比較精確的數據時,如全球衛星定位系統,才必須利用廣義相對論去糾正重力影響時間流逝速率的效應。沒有人知道在未來更加精確的測量下,相對論的公式會否出現偏差。

ligo-gravitatioanl-waves-2
Animated image converted from video by The News Lens Hong Kong. Original video credit: R. Hurt – Caltech/JPL

相對論與量子力學

物理學家非常清楚相對論與量子力學的假設互不相容。簡單地說,相對論禁止比光速更快地傳遞資訊,而量子力學則允許資訊在一刹那間橫跨宇宙。神奇地,描述大尺度時空的相對論與描述極微細粒子的量子力學,兩者於其應用範疇的預言都未曾出錯。

現在,物理學界傾向認為相對論並非大自然最基本的定律。很多人相信未來人類會找到能夠取代相對論、又與量子力學相容的時空和重力理論。

黑洞「火牆」

從前黑洞被認為是永不消失的。根據相對論,沒有任何物質能由黑洞視界(即光線也不能逃逸的界線)裡逃脫。然而,霍金(Stephen Hawking)在 1974 年預言,黑洞亦會以輻射粒子的形式流失能量。根據量子力學,真空並非真的一無所有,而是充斥著虛粒子對。量子力學裡的穿隧效應意味宇宙可以由虛無之中「借」來能量以產生虛粒子對,就好像這些虛粒子對由虛無之中穿越隧道到我們的宇宙中來,然後在極短時間內又互相碰撞、湮滅消失。宇宙似乎是個好債仔,有借有還。

霍金想像在黑洞的視界附近會有大量的虛粒子對產生又消失。可是,如果這些虛粒子對在非常接近黑洞視界出現的話,那麼它們就有可能在重新碰撞消失之前,其中一個粒子「不小心」越過了視界,落入沒有回頭路的黑洞之中。這樣的話,另一個粒子就失去了能與其湮滅的伴侶,能夠逃逸到遠處。由於能量必須守恆,逃逸的粒子帶有正能量,掉入黑洞裡的粒子就必須帶有負能量。所以對於遠方的觀測者來說,就如同黑洞拿自己的能量發射出一個帶有正能量的粒子。這個效應被稱為霍金輻射。

75c7e1d3-7819-4558-a97c6b6296350a07_article-gif
美國科學人雜誌曾以黑洞火牆理論作為封面故事。

近年有理論物理學家發現,霍金輻射可能顯示相對論在黑洞視界失效。相對論的公式不能應用於無限密度。愛因斯坦本人也清楚,在黑洞中央、密度無限大的奇點,相對論會失效。不過,由於黑洞的奇點永遠被視界包圍,而沒有任何資訊能夠從視界內傳遞出來,所以相對論在視界外的宇宙仍力保不失。

愛因斯坦說,一個人不可能以任何實驗或觀測分辨出自己正受重力影響加速、或是位於無重力的慣性參考系之中。這叫做等效原理,是廣義相對論的基本假設。相對論公式說明,視界內外的時空並無分別,等效原理同樣適用。可是有理論物理學家發現霍金輻射在一般條件下會在視界外形成一道超高溫的高能量粒子「火牆」,任何穿越視界的人都會被極高能量𣊬間分解成基本粒子。如果真的如此,那就意味著相對論在視界外已經失效。不過,現時仍未有任何觀測證據能檢驗這個黑洞火牆理論。

反物質支持相對論?

迪拉克(Paul Dirac)在 1928 年把量力子學與狹義相對論結合,預言了反粒子的存在。他發現結合了狹義相對論的薛丁格方程有兩個數學解,其中一個是正常的物質,另一個是擁有相反物理特性(例如相反電荷)的物質。現在,我們稱這道公式為迪拉克方程,叫擁有相反物理特性的物質做反物質。

反物質的其中一個未解之謎,就是究竟它們會否擁有「負質量」?迄今所有科學觀察皆顯示質量只有「正」、沒有「負」。因此萬有引力只能相吸,不像電磁力般能相吸或相斥。

由於反物質碰到物質就會立即湮滅,長時間地控制並觀察反物質非常困難。今年,歐洲核研究組織(CERN)的物理學家團隊首次成功測量反氫原子(antihydrogen)的發射光譜。反氫原子由一個反質子(antiproton)與一個正子(positron,即反電子)構成。他們發現反氫原子的發射光譜與普通的、由一個質子與一個電子構成的氫原子完全一樣。這亦代表反氫原子與氫原子的量子能階結構相同,而且同樣擁有正質量。

這個發現支持相對論的正確性。就如前面所述,等效原理是相對論的基本原則。如果反氫原子與氫原子的發射光譜不同,科學家就能夠透過觀察反氫與氫的光譜推斷出自己是否正被重力場吸引。這就違反了等效原理,相對論就是錯的。

相對論能繼續䇄立嗎?

費曼(Richard Feynman)說過:「科學知識是不同肯定程度的陳述的整體。有些非常不確定、有些差不多確定,但沒有任何是絕對確定的。」

Scientific knowledge is a body of statements of varying degrees of certainty – some most unsure, some nearly sure, but none absolutely certain.

其實,當科學家說一個舊科學理論被「推翻」了,並不代表那理論是錯的。如同愛因斯坦相對論取代牛頓力學一樣,我們仍然可以用牛頓力學公式計算出大部分相對論預言的重力效應,只是兩者在很多個小數位後會有差異。因此我們會說,相比牛頓力學,我們更有信心相對論比較正確。我們不會說牛頓力學沒有用,因為在低速、低重力的日常情況下,牛頓與愛因斯坦的公式的計算結果沒有分別。

無論日後人類能否找到比相對論更精確的重力理論,大自然定律依舊不會改變、物件依舊會向下掉、地球依舊會繞太陽公轉。唯一不同的是,人類對大自然的了解會更深、更準確。

這就是科學的意義。

延伸閱讀:

霍金輻射論文

測量反氫原子發射光譜論文

愛因斯坦教授 你是正確的

費曼誕辰:談科學精神、機率和不確定性

光速:宇宙高速公路的速度限制

為什麼夜空是黑色的?

這是一個非常古老的問題。問題的答案並不簡單,涉及對光線本質以及宇宙的理解。

想像宇宙是一個大球體,地球在球體正中心。球體裡面有隨機分佈的發光點,代表一顆又一顆的恆星。有些星星離中心點地球比較近、有些比較遠。想像這個球體不斷變大,新的星星在新的空間裡隨機生成。如果這個球體趨向無限大,星星的數量就會趨向無限多。由於星星的分佈是隨機的,我們從中心點往任一方向觀測,視線都必然會落在某一顆星之上。如果光線不需要傳播時間,即光速無限,那麼夜空就應該是白色的!

olbers_paradox_-_all_points
奧伯斯悖論示意圖。Image courtesy of Kmarinas86/Wikimedia Commons

這個問題叫做奧伯斯悖論 (Olbers’ paradox),是從前一個著名的科學悖論。現在我們知道宇宙並非無限大、可觀測宇宙大小有限、宇宙中星星的數量並非無限多、光速亦非無限快,因此從較遠的恆星出發的光不夠時間傳播到地球。

1861 年,馬克士威證明光是電磁波。當時的科學家都相信,就如同其他波動需要傳播媒介一樣,傳播光波亦需要一種假想的媒介,稱為以太。1907 年,阿爾伯特・邁克生 (Albert Michelson) 因為使用干涉儀非常準確地測量出光的速率而獲頒諾貝爾物理學獎。光速大約為每秒 30 萬公里,只需 1.3 秒就能從地球走到月球。

邁克生干涉儀實驗的另一目的是測量地球在以太之中運行的速率。他以為於一年四季不同時間做同樣的光干涉實驗,實驗結果理應會顯示光速因地球在以太中運動方向不同而有所分別。可是,邁克生和莫雷 (Edward Morley) 的干涉儀實驗結果顯示,不論地球的運動方向,光速都沒有改變。

1024px-aetherwind-svg
地球在假想的以太之中以不同方向運動會導致光速測量結果不同。Image courtesy of Cronholm144/Wikimedia Commons

愛因斯坦在 1905 年發表狹義相對論,解釋了邁克生和莫雷的實驗結果。相對論之中,時間和空間被結合成為一體,叫做時空。由於時間和空間的物理單位不同,我們需要一個因子去在兩者之間轉換。這個因子有著距離除以時間的單位,即是速率。這個速率是宇宙間所有物質的極限速度,因為跟據相對論,質量非零的物質需要無限多能量才能達到此極速。

愛因斯坦認為光是傳播資訊的最快方法。邏輯裡的因果定律成立是因為沒有資訊能傳遞快過光。因此,光速就是這個宇宙中的終極速度限制,而這個極速跟據相對論是個常數,永恆不變。在光速不變的前提下,空間會因觀測者的運動狀態不同而收縮。所以,相對論亦意味著光波不需要以太或任何傳播媒介。

相對論其實並沒要求光速不變而且為宇宙極速,只是這個極速必須剛好等於光速,才能解釋我們所觀察到的所有物理現象。因此,一直有理論物理學家研究可變光速理論。

screen-shot-2016-12-08-at-17-12-53
狹義相對論對光速不變導致時空收縮的數學圖解。不同顏色代表不同運動狀態的觀測者的時空。Image courtesy of Army1987/Wikimedia Commons

理論物理學家 João Magueijo 自 1990 年代起研究可變光速,亦寫了一本不錯的科普書講述他在發表論文時遇到的困難和科學家之間的合作與衝突。由於光速可變這假設會動搖所有物理理論的基礎,很少科學家會投入自己一生職業去研究。

今年 10 月,Magueijo 與合作者 Niayesh Afshordi 在科學期刊 Physical Review D 上發表了一篇新的可變光速研究論文,他們推導出宇宙微波背景 (cosmic microwave background, CMB) 的純量光譜指數 (scalar spectral index)。這是第一次可變光速理論研究能夠提供一個實在的數字去與觀測作比較。

現在的觀測結果雖然與 Afshordi 和 Magueijo 理論的數字吻合,但他們未能解釋光速可變會導致其他物理常數改變的後果。例如,光速可變意味著電磁力的大小在過去、現在、未來都不相同。這樣的話,依靠電磁力的化學知識全部都要改寫,科學家就很難解釋宇宙如何演化成今日的模樣、甚至地球上亦未必可以演化出生命。

screen-shot-2016-12-08-at-17-16-38
Afshordi 和 Magueijo 的可變光速論文明確預言宇宙微波背景光譜能量分佈斜率等於 0.96478(64)。Afshordi & Magueijo 2016, Phys. Rev. D, 94, 101301

“The predicted value is within current constraints, but improved observations would unambiguously prove or rule out the theory.” – Afshordi & Magueijo (2016)

光速是否可變是一個重要的科學問題,絕對有必要研究。然而為光速可變理論下結論,仍言之尚早。就如 Afshordi 和 Magueijo 所說,未來更精確的觀測結果將能證實或證偽光速可變理論。

提出預言、對比實驗,科學也。

延伸閱讀:

Critical geometry of a thermal big bang, Afshordi & Magueijo 2016, Phys. Rev. D, 94, 101301

光之系列:夜空為什麼是黑的?》- EVEREST. 議事之峰

1907年諾貝爾物理獎:阿爾伯特・邁克生》- 余海峯

超光速與時間倒流:叮噹可否不要老》- 余海峯

照亮相對論的光 (上)》- 余海峯

照亮相對論的光 (下)》- 余海峯