力透鏡確認了愛因斯坦的廣義相對論是現時為止最為正確的重力理論。而新一代的James Webb太空望遠鏡的影像解析度更高,因此能夠為天文學家提供許多前所未見的細節。能夠把更遠的星系看得更仔細的能力,將有助科學家研究宇宙早期星系演化。
Tag: General Relativity
【2020 諾貝爾物理學獎】廣義相對論與宇宙最黑暗秘密
諾貝爾獎有三個科學奬項,我們在學校也習慣以「物理、化學、生物」等不同科目去區分不同科學領域。這種分界當然能夠方便我們以不同角度去理解各種自然現象,但大自然其實是不分科目的。科學最有趣的是各種自然現象環環相扣,我們不可能只改變大自然的某一個現象而不影響其他。就好像蝴蝶效應,牽一髮而動全身。
人類首次拍得黑洞照片 再證愛因斯坦廣義相對論
黑洞帶給人類永恆的神秘感,它是時空的盡頭、連光也擺脫不了的「洞」。即使是理論物理學家,也難以用筆墨形容黑洞的模樣。要派太空人到黑洞附近去看看也不太可能,儘管航行者1號、2號花了近40年,才剛在不久前越過太陽系邊界,但黑洞都在太陽系以外非常遙遠的地方。 2017年,來自世界各地超過60個科研單位的天文學家聯結起位於地球各大洲的眾多個無線電望遠鏡,持續地觀察M87星系。這個名為事件視界望遠鏡(Event Horizon Telescope,簡稱EHT)的無線電望遠鏡網絡,終於直接拍攝到了人類史上首張黑洞「照片」,並於2019年4月10日全球同步發表。 黑洞是什麼? 黑洞是愛因斯坦於1915年發表的廣義相對論的方程式的一個數學解。愛因斯坦發現,在我們身處的宇宙中的任意點上,加速度與重力並不能被區分開來,是為「等效原理」。利用等效原理,加上光速不變假設,愛因斯坦推導出一組十式的方程組。廣義相對論取代了牛頓重力定律(或者可說是牛頓重力定律的更新版本),只要知道時空某處存在多少質量,就能夠利用那十條方程式描述時空的演化。 重力的特性是它只會互相吸引,不像電磁力那樣既能相吸亦能相斥。因此,質量越多,重力就越強;重力越強,就更輕易吸引更多物質。物質如果要擺脫更強的重力,就得付出更多能量。例如,在一顆小行星上,輕輕一跳可能就已足夠擺脫其重力;在地球上,卻必須利用火箭加速至最少每秒11.2公里,才能飛進宇宙空間。 早在愛因斯坦以前,物理學家就曾經想像過一顆質量非常高的恆星,其重力強大到必須跑得比光更快才能逃逸。牛頓重力理論中沒有質量的東西不會被重力影響,而光線究竟有沒有質量在當年也是未解之謎,他們想像「如果」光線也會被重力「拉」回恆星表面的情況,就把這種想像中的恆星稱為「暗星」。 廣義相對論中的重力卻能影響一切事物。所有物質,哪管有沒有質量,全都會被重力吸引。天體物理學家發現,當一顆質量巨大的恆星耗盡核反應燃料時,抵抗自身重力的壓力就會在一瞬間消失,恆星會向內坍縮、反彈,引發超新星爆發。超新星爆發後剩下來的核心質量如果足夠高,就會變成一個逃逸速度比光速更高的區域——黑洞。這個連光也不可能逃離的邊界的名稱就是事件視界(event horizon),因為在黑洞外的我們永遠不可能看到黑洞裏面發生的事。 黑洞不會發光,而且大多數黑洞體積又不大、離地球又遠(幸好)。因此,望遠鏡必須造得夠大,才能收集更多光線和提高解析度。以人類的科技,要探測上述由恆星死亡超新星爆炸所創造出來的細小黑洞(尺寸大多比地球上的城市更小),仍然遙不可及。不過,宇宙間有些黑洞尺寸卻巨大得難以置信。天文學家發現,在每個星系的中心,都存在一個極其巨型的黑洞,質量達到幾百萬個太陽,稱為超大質量黑洞。天文學家認為這些星系中心的黑洞由遠古細小黑洞互相結合而成的,它們同時也影響著星系的演化過程。 星系M87(Messier 87)中心的超大質量黑洞稱為M87*(讀作「M87星」或「M87 star」)。M87*的質量是太陽的65億倍。M87*半徑約為17光時(0.002光年),大概為冥王星軌道平均值的3倍左右,或者地日平均距離的120倍。 由於星系M87距離我們的銀河系約55,000,000光年,因此從地球上觀察M87*的事件視界直徑只有大約16微角秒(micro-arcsecond, μas)。這就好比從地球望向站在月球上的太空人的拳頭。事實上,今次EHT的天文學家拍攝的並非M87*的事件視界,而是直徑約42微角秒大小的吸積盤(accretion disk),叫做「黑洞的影子(black hole shadow)」。 事件視界望遠鏡(EHT)是什麼? 根據簡單光學定律,望遠鏡越巨大、觀測使用的波長越短,解析度也越高。人類所造的地面望遠鏡之中,無線電望遠鏡建造相對容易,因此普遍來說都較可見光望遠鏡巨大。另一方面,無線電受大氣擾動干擾的影響亦較可見光為低。EHT使用的無線電波段為1.3毫米,經過計算,我們需要的望遠鏡尺寸是⋯⋯地球直徑(即大概13,000公里)! 然而,即使是地球上最巨型的無線電望遠鏡,例如美國的阿雷西博望遠鏡(Arecibo Telescope,直徑305米)、中國的500米口徑球面無線電望遠鏡(Five-hundred-meter Aperture Spherical radio Telescope,簡稱FAST,直徑500米),以及俄羅斯的科學院無線電望遠鏡-600(Academy of Science Radio Telescope – 600,簡稱RATAN-600,直徑600米)等等,也遠遠不夠大。怎麼辦呢?總不能把整個地球改建成一支望遠鏡吧?幸好,物理學家早就發展出一種技術,叫做甚長基線干涉測量法(Very-long-baseline Interferometry,簡稱VLBI)。VLBI技術利用光線的波動特性,把不同地點的光線訊號互相重疊,從而構成更光亮、解析度更高的影像。 世界各地都有很多無線電望遠鏡,因此天文學家組成了一個VLBI望遠鏡網絡,用來加強所拍攝的影像的光度和解析度。EHT就是這個VLBI網絡的一部分,專門拍攝M87。過去兩年間,EHT收集到了足夠的光線,利用干涉分析建構出一幅解析度達20微角秒、足以分辨出M87的黑洞影子的照片。2019年4月10號,我們終於能夠一窺黑洞的廬山真面目! 圖4 EHT首張M87的無線電黑洞影子照片。(Image courtesy of EHT) 不發光的黑洞為什麼可以看得到? 咦,不是說過連光也不能離開黑洞嗎?為什麼還會有來自黑洞的訊號? 黑洞本身不會發光(理論上黑洞會放出所謂的霍金輻射(Hawking radiation),但這超出本文討論範疇,我在以往文章中已經討論過)。然而,正被黑洞吸入的星際物質、甚至是被黑洞強大重力扯得支離破碎的恆星碎片,會一邊加速至極高速度、一邊落入黑洞之中。這些物質構成一個溫度極高的吸積盤,會在落入黑洞之前釋放出大量輻射。EHT觀察的就是這些剛好在黑洞邊界發射出來的光。 順帶一提,黑洞邊界是時空中的資訊能夠傳播的最後界線,跨越了黑洞這道邊境的任何資訊都不可能被黑洞外面的宇宙所探知。因此,黑洞邊界又稱為事件視界,象徵宇宙中一切事件的盡頭。EHT的名稱也就很明顯了:事實上它拍攝的並非黑洞「本身」,而是事件視界外的黑洞影子。 愛因斯坦的預言 既然這是人類史上首張黑洞照片,為什麼我們會知道M87中心有個黑洞? 我們觀察到來自M87的X射線高能量噴流(jet)。天體物理學模型指出,當吸積盤的物質落入黑洞時,會有一部分物質被高速從黑洞兩極拋走,形成噴流。噴流中的物質溫度極高,加上其速度非常接近光速,因而放出X射線。這些來自M87的X射線能量間接指出其中心必定存在一個能提供物質如此強大能量的能源。根據人類已知物理學,黑洞是唯一解釋。 科學與其他學問的一個分別是,我們能夠利用科學定律來作出極其準確的量化(quantitative)預言。愛因斯坦廣義相對論的預言已經被實驗和觀測所一一證實,包括位於較強重力場中的時間流逝速率相對較慢(全球定位系統人造衛星必須使用廣義相對論作岀修正,所以我們的手提電話已是明證)、空間會被重力場扭曲(人造衛星已經測得地球附近空間扭曲程度與相對論預言一致)、2015年直接探測到兩個黑洞碰撞結合所釋放出的重力波(重力波觀測亦為黑洞存在的證據)。 EHT這張照片只是人類直接觀察黑洞的第一步。雖然這照片與想像中的電影劇照有頗大出入,卻是愛因斯坦相對論的另一個明證。誰知道未來人類科技會進步到何等程度,帶我們看到什麼? 圖5 電影《星際啟示錄(Interstellar)》顯示的黑洞。由該電影科學顧問、2017年諾貝爾物理學奬得主、理論天體物理學家基普・索恩(Kip S. Throne)利用廣義相對論方程組畫出。 本文作者感謝江國興教授的建議。…… Continue reading 人類首次拍得黑洞照片 再證愛因斯坦廣義相對論
一些關於霍金的文字
霍金是繼愛因斯坦後,另一位名字深入大眾文化的物理學家。 霍金的宇宙誕生、時間開端理論,認為宇宙誕生一刻並非時間的「開端」。這理論聽起來非常奇怪難懂,而且似乎違反直覺。你會說:「宇宙」所指當然就是時間和空間,因此於宇宙誕生瞬間,時間當然才「開始」存在啦!故此,討論宇宙誕生「之前」發生了什麼事是沒有意義的,因為在那「時候」,連時間都尚未誕生。 大家可能會覺得很古怪,宇宙誕生一刻要是並非時間的開端,那麼時間的開端在哪𥚃?原來在霍金的理論中,時間並非只有一個「維度」;我們日常經歷的時間叫做「實時間」,但宇宙誕生「之前」的時間是「虛時間」。在這裡,「實」和「虛」是數學描述,是數學中的「實數」和「虛數」(即開方負一)的意思。 這個非常前衛的理論,引起了不少包括專業物理學家在內的人熱烈討論。當然,霍金的理論有堅實的數學支持。但是無論一個理論的數學構造如何合理、美麗、引人入勝,若然沒有實驗數據或觀測證據支持,就永遠不能證實。霍金的虛時間理論當然仍未有任何數據或觀測支持,因此物理學家和宇宙學家,仍只把它看待成一個不錯的、有可能是正確的、有待驗證的理論。 然而,霍金卻在他的暢銷科普書籍《時間簡史》中把虛時間概念寫得如像已經被證實了一樣,引起了不少物理學家的迴響。身為理論物理學家,霍金的工作就是要建構出一個合理的宇宙模型。可是,合理並不保證與現實相符。檢驗各種合理的宇宙模型,並不在霍金的工作範圍之內。因此,有人認為他此舉是誤導大眾,也有人認為他只是以理論物理學家的角度出發去做科普,無傷大雅。 我在大學物理系的一位老師就曾經說過,霍金寫的是科普「毒物」。這個評論或許有些太過重了,但卻不無道理。如果霍金寫的書籍首要對象是專業的物理學家,那並無不可。然而,更多讀者是業餘因興趣而讀霍金著作的,未必有足夠知識下判斷。更甚者,對於有意進入物理系、以研究為目標的學生們,更可能造成先入為主誤導的反效果,限制了他們的想像力。 那麼,究竟理論物理學家是否不應寫科普?我認為這並非職業問題、也不是內容的問題,而是在於表達方式。霍金的書籍,的確沒有明確表示哪些理論是已經證實的內容、哪些是未經證實的猜測。以我自己來說,最初讀《時間簡史》的時候,我亦曾誤會,以為所有內容在科學界都是已有共識的。當然,從著書的角度看,寫書推廣自己的理論亦為無可厚非。 霍金的另一個著名研究範疇,是黑洞。黑洞的愛因斯坦於 1915 年發表的廣義相對論的一個結論,質量極高的天體產生的重力強得光也無法脫離。一直以來,物理學家都認為在黑洞中心,時空會被重力扭曲至極致,成為一個密度無限大的點,稱為奇點。然而,由於光速是宇宙極速,沒有任何東西或資訊能夠從黑洞裡面跑出來,因此我們無從觀察黑洞裡面究竟是否如物理學家所預期的一樣。 霍金與彭羅斯關於黑洞奇點的數學研究,指出符合廣義相對論的宇宙模型之中,黑洞和宇宙誕生一刻都必定存在奇點。換句話說,虛時間亦可能在黑洞中心的奇點「之後」延續下去。關於虛時間的這些理論,以現時人類科技水平,根本沒有任何辦法檢驗這個理論。所以,很多物理學家對於霍金的奇點理論抱持懷疑態度。 然而,霍金研究黑洞的並非只有奇點。黑洞吸引大量物質,物理學家認為這些關於這些物質的資訊會永遠消失於我們的宇宙——黑洞的事件視界之外。霍金推導出了一道方程式,把黑洞的表面積與其「儲存」的資訊量——熵——拉上關係,資訊量越多,表面積就越大。物理學界被霍金這個發現震驚了,原來黑洞裡的資訊狀態竟能以某種方式表現在黑洞表面之上!對比起霍金關於奇點的理論,這個黑洞熵理論並沒有涉及無限大。雖然這個理論仍未被天文觀測所證實,物理學界普遍接受這個理論。 量子力學和廣義相對論是現代物理學的兩大支柱,可是兩者卻水火不容。量子力學以機率描述微觀粒子世界,廣義相對論以絕對的因果關係描述巨觀的宇宙結構。若要數霍金最了不起的成就,就是他在黑洞表面的時空結合兩者,發現了所謂的霍金輻射。霍已輻射理論指出,黑洞會不斷放出粒子,而這些粒子竟然帶有過往被黑洞吞噬的資訊!黑洞的熵因而下跌,因此黑洞的表面積,即黑洞的尺寸亦同昨會縮小。霍金更計算出霍金輻射的速率,發現黑洞尺寸越小,霍金輻射速率就越高。因此,黑洞非但會「蒸發」,而且這個過程會隨黑洞越縮越小而變得越來越快。 天文學家一直希望直接觀察黑洞,以證實(或證偽)這個霍金輻射理論。這亦是霍金一生發表過的眾多理論之中,最有望被現代科學家檢驗的一個。很多理論物理學家更在接受了霍金輻射存在的前提下,繼續這個研究方向。最近研究方向普遍認為,如果霍金輻射的確存在,那麼黑洞表面就會形成一道由極高能量粒子構成的「火牆」,沒有任何物件能安然無恙地跨越黑洞的事件視界,顛覆了物理學界一直以來對黑洞的認識。霍金輻射告訴我們:黑洞並不黑! 霍金過世,很多人(包括科學家在內)都為霍金未能親眼目睹霍金輻射被天文觀測所證實而感到惋惜。霍金的理論物理研究雖然未有為他贏得諾貝爾獎,然而很多現代物理學理論都是建築在他的研究之上,就好像那個黑洞火牆理論一樣。就如同愛因斯坦沒有因相對論獲獎、卻造就了往後眾多研究者因他的相對論而得到這科學桂冠一般,不難想像,往後想必亦會有研究者因證實霍金某理論而獲獎。 牛頓:「如果說我看得比較遠,那是因為我站在巨人肩膀上。」對比他的身驅,這或許是對霍金的科學貢獻和意志的最高稱頌。
方程是永恆:愛因斯坦(Albert Einstein)
1879年,愛因斯坦出生於德國南部小鎮烏姆(Ulm)。1880年,他隨家人搬到慕尼黑(München)。與一般印象相反,愛因斯坦小時候因為鮮少說出完整句子,父母曾以為他有學習障礙。 愛因斯坦在慕尼讀中學。他非常討厭德國學校著重背誦的教育方式,課堂上總自己思考問題,不專注聽課,所以經常被老師趕出班房。1894年,愛因斯坦15歲,他父親赫爾曼・愛因斯坦(Hermann Einstein,1847-1902)在慕尼黑的工廠破產,迫使舉家遷往意大利帕維亞(Pavia),留下愛因斯坦在慕尼黑完成中學課程。同年12月,愛因斯坦以精神健康理由讓學校準許他離開,前往帕維亞會合家人。 這次出走改變了愛因斯坦的一生,甚至可說改變了人類文明的科學發展。 愛因斯坦不懂意大利語,不能在帕維亞上學。他早有準備,前往瑞士德語區蘇黎世(Zürich)投考蘇黎世聯邦理工學院(Eidgenössische Technische Hochschule Zürich,通常簡稱ETH Zürich)。結果愛因斯坦數學和物理學都考得優異成績,但其他科目如文學、動物學、政治和法語等等卻全部不合格。 蘇黎世聯邦理工學院給予愛因斯坦一次機會,著他到附近小鎮阿勞(Aarau)去完成中學課程,明年再考。在這段期間,愛因斯坦暫住在斯特・溫特勒教授(Jost Winteler,1846-1929)家中。愛因斯坦很喜歡開明、自由的溫特勒教授一家,利用這一年溫習各科目,更與溫特勒的女兒瑪麗・溫特勒(Marie Winteler,1877-不詳)相戀。 瑞士的教育方式與德國的不相同,並不強調背誦。瑞士學校老師非常鼓勵學生發表意見,不會以權威自居,這一點與討厭權威的愛因斯坦非常合得來。愛因斯坦曾於寄給溫特勒的信中寫道:「對權威不經思索的尊重,是真理的最大敵人。」[1]他稱自己為世界主義者,不喜歡德國日漸升溫的國家主義。溫特勒教授就幫助愛因斯坦放棄德國國籍,愛因斯坦因而成為了無國籍人士,他很喜歡這個「世界公民」身份。 一年後,愛因斯坦再次投考蘇黎世理工學院。物理、數學當然成績優異,其他科目亦合格,愛因斯坦順利被取錄入讀物理學系。然而,他父親卻期望他進入工程學系,將來繼續家族工廠,因此他們大吵了一場。 愛因斯坦大學時繼續他我行我素的性格,經常逃課去上其他科目的課堂,所以都要他的同學們幫他抄筆記,他才知道考試範圍。加上愛因斯坦以刺激權威為樂,教授們都不喜歡這個又煩又懶的學生,不願意幫他寫好的推薦信,所以他畢業後一直找不到工作。 在學時,愛因斯坦與物理系唯一一個女同學米列娃・馬利奇(Mileva Marić,1875-1948)相戀。根據膠囊資料顯示,愛因斯坦與米列娃的書信中曾提到他們有個女兒叫麗瑟爾。不過後來他們就再沒提到她,歷史學家估計麗瑟爾出生不久就死於猩紅熱。愛因斯坦與米列娃在1903年結婚,之後他們生了兩個兒子——大子漢斯和二子愛德華。他們最終在1914年分居,1919年離婚。 愛因斯坦於1900年畢業,取得了教學文憑。可是,由於教授們都不喜歡愛因斯坦,他申請大學職位的申請信全都石沉大海。愛因斯坦非常沮喪,以致他父親於1901年寫信給威廉・奧斯特瓦爾德教授(Wilhelm Ostwald,1853-1932,1909年諾貝爾化學獎得主)請求他聘請愛因斯坦當助手,或者至少寫給愛因斯坦鼓勵說話。當愛因斯坦快要連奶粉錢也不夠的時候,他大學時的舊同學格羅斯曼・馬塞爾(Grossmann Marcell,1878-1936)[2]的岳父以人事關係幫他在瑞士專利局找到了一份二級專利員的工作,愛因斯坦才度過難關。 愛因斯坦喜歡在早上就把所有工作做完,利用整個下午在辦公桌上思考物理問題。一個從學生時代就已令他著迷的問題就是:如果他能夠跑得和光一樣快,會看到什麼? 詹士・馬克士威(James Clerk Maxwell,1831-1879)的電磁學方程組說明光線就是電磁場的波動,而電磁波亦已被亨里希・赫茲(Heinrich Hertz, 1857-1894)的無線電實驗證明存在。科學家認為,既然光是波動,就跟所有其他波動一樣需要傳播媒介:聲波需要粒子、水波需要水份子,而光需要「以太」才能在宇宙直空中傳播。 愛因斯坦於1905年發表狹義相對論。在這之前牛頓的絕對時空觀早已令科學界困擾多年。著名的邁克遜—莫雷實驗結果與牛頓力學速度相加法則相違背[3]。無論地球公轉到軌道的哪個位置,無論實驗儀器轉向哪個方向,光線都相對以太以同樣秒速30萬公里前進,分毫不差。這就好像下雨時無論向哪個方向跑,雨點總是垂直落在我們的頭頂。難道雨點知道我們跑步方向,故意調整落下角度嗎? 光速不變概念非常革命性。因為光速不變,在我們眼中同時發生的兩件事,其他人看起來卻不一定同時。時間與空間有微妙關係,兩者結合在一起成為時空。當年大部分科學家都認為問題必然出在馬克士威電磁方程式,但愛因斯坦卻不這麼想。他認為,我們常識中對「同時」的理解根本有誤。不過,愛因斯坦並非以力學切入這個問題,而是思考一個著名的電磁現象:法拉第電磁感生效應。 法拉第電磁感應定律指出,移動的帶電粒子會同時產生電場與磁場,靜止的帶電粒子則只會產生電場,沒有磁場。但相對論說宇宙並沒有絕對空間,速度只有相對才有意義。而物理現象必須是唯一的,所以我們就有個問題:究竟有沒有磁場存在?把電磁鐵穿過線圈,我們可以做以下三個實驗: (一)固定電磁鐵,移動線圈; (二)固定線圈,移動電磁鐵; (三)固定線圈及電磁鐵,改變磁場強度。 實驗結果:三個實驗之中都有電流通過線圈,而且數值完全一樣! 我們可以從實驗結果得出甚麼結論?基於完全不同的物理過程,實驗(一)與實驗(二)和(三)得到相同的電流。實驗(一)產生電流的是磁場,而實驗(二)和(三)產生電流的卻是改變的磁場所感生的電場。嚴格來說,實驗(一)的結果並非法拉第定律,因為法拉第定律所指的是磁場感生電場。正是這區別令愛因斯坦得到靈感,他在論文中說這個現象顯示無論是電動力學與力學,根本不存在絕對靜止這回事。 愛因斯坦預期相對論會在科學界引起廣泛討論,結果卻是異常安靜。愛因斯坦突然拋棄了物理「常識」,此舉令科學界摸不著頭腦。馬克斯・普朗克(Max Karl Ernst Ludwig Planck,1858-1947,1918 年諾貝爾物理奬得主)可能是唯一一個明白相對論重要性的人,他讀到論文後寫過信去問愛因斯坦解釋清楚一些理論細節,更派馬克斯・馮勞厄(Max von Laue,1879-1960,1914 年諾貝爾物理奬得主)去拜訪愛因斯坦。馮勞厄發現愛因斯坦竟然不是大學教授,而是瑞士專利局裡的小職員。回家路上,愛因斯坦送給馮勞厄一支雪茄,馮勞厄嫌品質太差,趁愛因斯坦不為意從橋上把雪茄丟了下去。 愛因斯坦導出那舉世聞名的質能關係方程式E=mc2,解釋了放射性同位素輻射能量來源和太陽能量來源。不過愛因斯坦後來在1921年獲頒的諾貝爾物理學獎並非因為相對論,而是因為他應用普朗克的量子論解釋了光電效應。 愛因斯坦並沒有滿足於狹義相對論。狹義相對論只適用於慣性坐標系,可是宇宙裡絕大部份坐標系都是非慣性的,例如地球就是個加速中的坐標系。愛因斯坦知道必須找出一個新理論去解釋加速坐標系中的運動定律。他幾乎是獨力地與新發展的數學分支「張量分析」在黑暗之中搏鬥了十年之久,最後才於1915年11月完成廣義相對論。我們已經觀賞過的宇宙大爆炸,都遵守廣義相對論的方程式。 愛因斯坦尋找正確的廣義相對論公式期間,米列娃與愛因斯坦的關已經變得非常惡劣,而且愛因斯坦的母親非常不喜歡他倆的婚姻,米列娃她就在1914年帶著兩個孩子離開他們的家柏林,到瑞士去了。與孩子分離使愛因斯坦非常傷心,因為他堅持留在德國做研究。不過,他與後來第二任妻子、表妹愛爾莎・愛因斯坦(Elsa Einstein,1876-1936)[4]的曖昧關係已經一發不可收拾。 我們穿越時間來到了1915年11月底,愛因斯坦就快發現能夠描述整個宇宙的新理論了。狹義相對論裡時空是平的,並且所有慣性坐標系都是等價的。廣義相對論描述的是更廣泛的彎曲時空,它能描述所有坐標系。只要指定一套時空度規、給定能量與物質密度分佈,就能夠計算出時空曲率如何隨時間改變。相對論大師約翰・惠勒(John Archibald Wheeler,1911-2008)曾說:「時空告訴物質如何運動;物質告訴時空如何彎曲。」[5] 狹義相對論改正了以往區分時間與空間的常識,而廣義相對論則把萬有引力描述成時空曲率,連光線也會被重力場彎曲,再次顛覆了常識。我們只需要把一組十式的愛因斯坦場方程式配合相應時空度規,任何宇宙的過去與未來都能夠計算出來。 當然很多人質疑廣義相對論的正確性,因為科學理論必須接受實驗驗證。終於在1919年,英國天文學家亞瑟・愛丁頓(Sir Arthur Stanley Eddington,…… Continue reading 方程是永恆:愛因斯坦(Albert Einstein)
相對論、量子力學、黑洞和反物質
愛因斯坦發表相對論至今已超過 100 年。百年之間,無數科學家使用各種方法檢驗相對論,所有結果都與愛因斯坦寫下的方程式的結果吻合,從未出錯。 䇄立不倒的相對論 自邁克生(Albert Michelson)與莫雷(Edward Morley)在 1887 年做的光干涉實驗驗證了狹義相對論的假設,到 2015 年位於美國的兩座激光干涉重力波天文台(LIGO)直接探測到廣義相對論預言存在的重力波,愛因斯坦的相對論的所有預言已全被實驗和天文觀測驗證。無獨有偶,這兩個發現同樣都基於光干涉實驗,巧合呼應愛因斯坦發現相對論之前所作的光線騎士思想實驗。 不過,這並不代表在未來不會發現相對論出錯。牛頓力學在很多情況仍然適用,例如計算太空探測器的軌道並不需要使用相對論。在需要比較精確的數據時,如全球衛星定位系統,才必須利用廣義相對論去糾正重力影響時間流逝速率的效應。沒有人知道在未來更加精確的測量下,相對論的公式會否出現偏差。 相對論與量子力學 物理學家非常清楚相對論與量子力學的假設互不相容。簡單地說,相對論禁止比光速更快地傳遞資訊,而量子力學則允許資訊在一刹那間橫跨宇宙。神奇地,描述大尺度時空的相對論與描述極微細粒子的量子力學,兩者於其應用範疇的預言都未曾出錯。 現在,物理學界傾向認為相對論並非大自然最基本的定律。很多人相信未來人類會找到能夠取代相對論、又與量子力學相容的時空和重力理論。 黑洞「火牆」 從前黑洞被認為是永不消失的。根據相對論,沒有任何物質能由黑洞視界(即光線也不能逃逸的界線)裡逃脫。然而,霍金(Stephen Hawking)在 1974 年預言,黑洞亦會以輻射粒子的形式流失能量。根據量子力學,真空並非真的一無所有,而是充斥著虛粒子對。量子力學裡的穿隧效應意味宇宙可以由虛無之中「借」來能量以產生虛粒子對,就好像這些虛粒子對由虛無之中穿越隧道到我們的宇宙中來,然後在極短時間內又互相碰撞、湮滅消失。宇宙似乎是個好債仔,有借有還。 霍金想像在黑洞的視界附近會有大量的虛粒子對產生又消失。可是,如果這些虛粒子對在非常接近黑洞視界出現的話,那麼它們就有可能在重新碰撞消失之前,其中一個粒子「不小心」越過了視界,落入沒有回頭路的黑洞之中。這樣的話,另一個粒子就失去了能與其湮滅的伴侶,能夠逃逸到遠處。由於能量必須守恆,逃逸的粒子帶有正能量,掉入黑洞裡的粒子就必須帶有負能量。所以對於遠方的觀測者來說,就如同黑洞拿自己的能量發射出一個帶有正能量的粒子。這個效應被稱為霍金輻射。 近年有理論物理學家發現,霍金輻射可能顯示相對論在黑洞視界失效。相對論的公式不能應用於無限密度。愛因斯坦本人也清楚,在黑洞中央、密度無限大的奇點,相對論會失效。不過,由於黑洞的奇點永遠被視界包圍,而沒有任何資訊能夠從視界內傳遞出來,所以相對論在視界外的宇宙仍力保不失。 愛因斯坦說,一個人不可能以任何實驗或觀測分辨出自己正受重力影響加速、或是位於無重力的慣性參考系之中。這叫做等效原理,是廣義相對論的基本假設。相對論公式說明,視界內外的時空並無分別,等效原理同樣適用。可是有理論物理學家發現霍金輻射在一般條件下會在視界外形成一道超高溫的高能量粒子「火牆」,任何穿越視界的人都會被極高能量𣊬間分解成基本粒子。如果真的如此,那就意味著相對論在視界外已經失效。不過,現時仍未有任何觀測證據能檢驗這個黑洞火牆理論。 反物質支持相對論? 迪拉克(Paul Dirac)在 1928 年把量力子學與狹義相對論結合,預言了反粒子的存在。他發現結合了狹義相對論的薛丁格方程有兩個數學解,其中一個是正常的物質,另一個是擁有相反物理特性(例如相反電荷)的物質。現在,我們稱這道公式為迪拉克方程,叫擁有相反物理特性的物質做反物質。 反物質的其中一個未解之謎,就是究竟它們會否擁有「負質量」?迄今所有科學觀察皆顯示質量只有「正」、沒有「負」。因此萬有引力只能相吸,不像電磁力般能相吸或相斥。 由於反物質碰到物質就會立即湮滅,長時間地控制並觀察反物質非常困難。今年,歐洲核研究組織(CERN)的物理學家團隊首次成功測量反氫原子(antihydrogen)的發射光譜。反氫原子由一個反質子(antiproton)與一個正子(positron,即反電子)構成。他們發現反氫原子的發射光譜與普通的、由一個質子與一個電子構成的氫原子完全一樣。這亦代表反氫原子與氫原子的量子能階結構相同,而且同樣擁有正質量。 這個發現支持相對論的正確性。就如前面所述,等效原理是相對論的基本原則。如果反氫原子與氫原子的發射光譜不同,科學家就能夠透過觀察反氫與氫的光譜推斷出自己是否正被重力場吸引。這就違反了等效原理,相對論就是錯的。 相對論能繼續䇄立嗎? 費曼(Richard Feynman)說過:「科學知識是不同肯定程度的陳述的整體。有些非常不確定、有些差不多確定,但沒有任何是絕對確定的。」 Scientific knowledge is a body of statements of varying degrees of certainty – some most unsure, some nearly sure, but none absolutely…… Continue reading 相對論、量子力學、黑洞和反物質
宇宙膨脹可能均速、也可能加速
愛因斯坦在 1916 年正式發表廣義相對論之前,宇宙被普遍認為是物理世界的一個背景舞台。廣義相對論描述時間、空間、物質、能量的互動,把宇宙由背景變成了主角。 愛因斯坦原本並不相信宇宙能夠膨脹或者收縮。縱使他知道他親手推導發現的方程式顯示了一個必然結果:宇宙不是在膨脹就是在收縮,他覺得這是不可能的。數學邏輯本身不可能出錯,但愛因斯坦也相信自己的推導沒有錯。因此,他只好在他的方程式加入一個人為的、不影響方程式正確性的項,就是所謂的宇宙常數 (cosmological constant)。 由於重力只能吸引、不能排斥,宇宙不可能是靜止的。想像一個拋向半空的球,它不是正在上升就是在下降,除了由上升變成下降的一瞬間和撞到地面之外,球在重力的影響下必然在運動。在星系的巨大尺度,宇宙只由重力支配,因此亦必然在運動。 引入宇宙常數的愛因斯坦以為這樣就能解決他的問題:使宇宙靜止。宇宙常數有著與重力相反的性質:使物質互相排斥。愛因斯坦認為充滿物質的宇宙在重力的影響下會收縮,因此加入宇宙常數去平衡重力的吸引,希望得到一個靜止的宇宙。 可是,哈勃 (Edwin Hubble) 發現星系正在互相遠離,而且越遙遠的星系後退的速度就越快。這只能有兩個解釋:要麼地球是宇宙的中心、要麼宇宙正在膨脹。當愛因斯坦知道哈勃的發現後,他後悔在廣義相對論方程式裡加入了人為的宇宙常數 (流傳他說過這是他「一生中最大的錯誤」的故事應該是假的)。哈勃更邀請愛因斯坦到他位於美國加州的巨型天文望遠鏡,讓愛因斯坦親眼看到宇宙膨脹的證據。 “Historically the term containing the ‘cosmological constant’ ƛ was introduced into the field equations in order to enable us to account theoretically for the existence of a finite mean density in a static universe. It now appears that in the dynamical case…… Continue reading 宇宙膨脹可能均速、也可能加速
重力波:2016年邵逸夫天文學奬
隨著今年2月11日美國激光干涉重力波天文台 (LIGO) 公布人類首次直接探測到重力波之後,其理論和實驗的先驅研究者羅奈爾特・德雷弗 (Ronald Drever)、基普・索恩 (Kip Throne) 以及雷納・韋斯 (Rainer Weiss) 在5月11日得到了邵逸夫天文學奬。 第一次直接探測重力波在廿一世紀的今天的意義,就好比在十七世紀時伽利略首次用望遠鏡看夜空一樣。電磁力與重力都是已知四種基本力的兩種。可是,對比於人類自演化以來已經非常熟悉的重力,人類觀察宇宙的手段卻一直局限於電磁波,也即是光。就連在1933年才首次被費米提出的弱力,也已經早被天體粒子物理學家利用來觀察宇宙的微中子了。 為什麼重力波一直未能被應用於天文觀測?原因非常簡單:因為重力實在太弱了。在原子的尺度裡,重力比弱力足足弱了29個數量級,即是小數點後跟了28個0。LIGO在2015年升級為Advanced LIGO之前,地球上跟本沒有一個儀器能夠探測到來自宇宙深處最強的重力波。 究竟什麼是重力波?我們需要簡單介紹一下愛因斯坦在 1916 年發表的廣義相對論。廣義相對論徹底推翻牛頓重力理論,把重力由牛頓時代一直被認為是一種不需要時間傳遞的超距力,以複雜但極其優美的數學重新描述為時間和空間的漣漪。換句話說,重力需要時間傳遞。廣義相對論說時空能夠被物質或能量所扭曲,因此時空原來一直都積極參與物理世界的演變,而非一成不變的背景舞台。 我們來看看時空被物質扭曲的情況。想像時空是一張彈床的表面,如果上面有兩個重量相當的保齡球,它們就會互相圍繞轉動。就好像在水中用兩隻手指互繞轉動形成向外擴散的波浪般,彈床表面亦會形成波浪。說回重力,當兩個黑洞互相圍繞公轉,時空亦會因它們對時空施加的循環拉扯而形成向外擴散的波浪。這個重力的波浪,就叫做重力波。 愛因斯坦的廣義相對論預言的時空扭曲效應,例如重力透鏡、宇宙膨脹、黑洞等等,都已經一一被天文觀測所證實。重力波這個最後的廣義相對論預言,在2016年,即愛因斯坦發表廣義相對論100週年被證實,也可說是一個美麗的巧合。 我們知道,每一個科學家在發現的過程中,都是站在許許多多巨人的肩上的。重力波的發現亦不例外。人類終於能夠以重力去觀察宇宙,歷代數不清的科學家、工程師和技術員,全部都功不可沒。或許,就如費曼說過,科學家在研究的過程中已經得到來自大自然最大的奬勵,就是發現的樂趣。無論如何,讓我們在恭賀得奬者的同時,也感謝所有為探測重力波貢獻過的人。 封面圖片:NASA 的重力波模擬圖。 延伸閱讀: 《愛因斯坦教授 你是正確的》 《銀河消息:人類首次聆聽重力波》 《重力波:愛因斯坦的最後預言 (下)》 《重力波:愛因斯坦的最後預言 (中)》 《重力波:愛因斯坦的最後預言 (上)》
愛因斯坦教授 你是正確的
萬一觀測結果與你的理論不符呢? 1919 年,愛因斯坦的一個學生如此問他。那天,愛丁頓 (Sir Arthur Stanley Eddington) 在西非普林西比島 (Príncipe) 以電報向全世界傳送他的日全食觀測結果。他的觀測顯示星光的確被太陽重力扭曲,成為愛因斯坦廣義相對論的第一個證據。 若然如此,我會為上帝感到惋惜。我的理論是正確的。 愛因斯坦這樣回答。 今年 2 月 11 號,激光干涉重力波天文台 (LIGO) 正式發表人類史上首次直接觀測到重力波 GW 150914 的證據。6 月 14 號,LIGO 再發表第二個重力波 GW 151226 的證據。 這兩個重力波都是雙黑洞結合系統所釋放出的。另外比較少人留意的是 LIGO 同時發表了第三個疑似重力波 LVT 151012 的證據。相比 GW 150914 與 GW 151226 的 99.99997%,LVT 151012 只有 87% 機會是真實的重力波。 這三個重力波訊號打開了人類觀察宇宙的另外一個窗戶。幾千年的人類文明以來,我們終於能夠以電磁波以外的方法觀察這個宇宙。如果人類文明能夠延續下去,這肯定佔有未來歷史書中極其重要的一頁。 另一方面,這三個重力波訊號也帶給了人類另一個難題:為什麼擁有幾十倍太陽質量的雙黑洞系統比我們想像的還要多?這對於人類了解恆星演化和宇宙演化等課題極為重要。 今年剛好是愛因斯坦發表廣義相對論 100 週年。97 年前,廣義相對論的第一個預言「星光偏折」得到了證實。今年,廣義相對論的最後一個預言「重力波」也得到了驗證。科學就是如此的一門學問,能夠用嚴謹的數學作出在 100 年後以 99.9999%…… Continue reading 愛因斯坦教授 你是正確的
重力波:愛因斯坦的最後預言 (中)
續上文《重力波:愛因斯坦的最後預言 (上)》 2016 年 2 月 11 號香港時間 2330,美國激光干涉重力波天文台 (LIGO Lab) 舉行了記者會,發表了已經經過同儕審查的重力波存在的直接證據。愛因斯坦在 100 年前發表的廣義相對論的所有預測,終於全部被天文觀測證實。是次發現的重力波,在 LIGO 升級完成成為 aLIGO 之後就立即探測到了。 LIGO Lab 於 2015 年 9 月 14 號 09:50:45.391 UT 探測到一個重力波,代號 G184098。由於 aLIGO 探測器共有兩個,分別位於路易斯安那州和華盛頓州,兩者相距 3,002 公里。因此同一個重力波會在不同時間抵達兩個 aLIGO 探測器,使用三角測距法就能夠計算出其波源距離地球有多遠。 經過計算,G184098 位於銀河系外非常遙遠的地方,其重力波以光速穿越宇宙大約 13 億年,在 2015 年 9 月 14 號到達地球。LIGO Lab 分析 G184098 的訊號,發現其頻率與波幅都隨時間上升,然後突然消失。使用超級電腦對比愛因斯坦方程式的模擬,我們能夠確定 G184098 的訊號是黑洞雙星系統產生的,即兩個恆星質量的黑洞互相公轉、最後結合。 LIGO 研究團隊指出,這兩個黑洞的質量大約各為 30…… Continue reading 重力波:愛因斯坦的最後預言 (中)