科幻的意義 有人指控我「不尊重科幻作品」。我尊重他們發表意見的權利,亦欣賞他們對科幻作品的熱誠。我相信,這種熱情亦是推動好奇心的源動力。而我同時認為,如同《進擊的巨人》這樣好的科幻作品,是能夠激起人們思考科學、社會問題,再應用於我們所生存的這個世界之中的。 我希望藉著有趣的動漫題目,吸引各位思考科學原理。這當然就不是說我要破壞原作者的創作。誰不知道在作品當中,作者就是神、就是物理定律?我們會不會把科普文中提到的科學問題傳給作者叫他修改作品?不會,因為我們明白探討的題目是「如果在我們這個世界打出一記認真拳/打出龜派氣功/變身成為巨人,會發生什麼事情呢?」 就如同從前科學仍未發達的時候,登陸月球被視為幻想。有小說作家幻想登上月球,我們不會去攻擊他「不科學」,而是把這個幻想當成思考科學問題的機會,改善我們的科學技術。想必有些人曾經思考過「如果我們真的能夠飛上月球,會發生什麼事情呢?」 最終,岩士唐踏出了人類的一大步。幻想,成了真實。 科幻絕不應只幻不科。其實,我自己也是《進》的粉絲。吸引我的,除是了那些刺激的戰鬥場面外,也是那些叫人反思現實的情節。高牆和巨人,都一一暗喻了許多發生在我們身邊的社會問題。我們會把作品中對社會的描寫化作現實的反思,為什麼我們不能把作品中的科幻化作現實科學的思考?這樣,科幻才能成就科學。 我相信,這就是科幻的意義。 如果在我們的世界裡 巨人究竟可以有多重? 最後,就讓我們看看巨人究竟有多重。在我們的世界中,以現在人類對大自然的科學知識,我們沒有辦法進行高維度的物質傳送。因此就必須要憑空產生出額外的物質,無可避免地用到愛因思坦的質能互換定律 E=mc2。可是,這又會引起另一個問題:產生質量的能量太過龐大。 作者亦有想過這個問題。漫畫之中,曾明示過「巨人比想像中輕」。因此,我們就來假設在完全沒有用到 E=mc2 之下,巨人究竟會有多重。所以今次我們就不是假設密度不變,而是質量不變。跟上次一樣,我們只要使用密度=質量/體積,就能夠計算出各種巨人的密度。 對於一個 3 米級的巨人,其體積是一個 1.7 米高的人類的 5.5 倍。如果要維持質量不變,那麼 3 米級巨人的密度就是人類的 1/5.5=0.18,即是只有人類的 18%。以人類平均密度大約為 0.95 g/cc 去計算(g/cc 即是每平方厘米克),3 米級巨人的密度就是每平方米 0.17 g/cc。順帶一提,海平面一個大氣壓力下、室溫的水的密度是 1 g/cc,這就是為什麼人體是會浮在水面上的原因。而巨人受到的浮力就更加強了,想潛水基本上是不太可能的。 那麼 15 米級的巨人呢?體積是人類的 687 倍,密度是人類的 0.1%,即是 0.0014 g/cc。在海平面室溫的大氣密度是 0.0012 g/cc,所以 15 米級巨人的密度原來跟空氣差不多,被其打中應該就像颱風時站在街上的感覺吧⋯⋯ 最後,當然少不了大家最關心的超大型巨人了。體積是人類的 44,000 倍,密度就只有人類的 0.0022%,即 0.00002 g/cc。這不就是只有大氣密度的 1.8% 嘛⋯⋯這樣的話,如果超大型巨人真的出現,我們頂多也只會看見一團非常輕薄的肉色氣團,被打中也是不會有什麼感覺的。而且,因為其比空氣密度更低,所以會慢慢升上天空,很恐怖的說⋯⋯哇,什麼時候變成鬼故事了? 科幻是科學的翅膀…… Continue reading 科幻是科學的翅膀