亞視永恆。但有些東西可以比亞視更永恆。 我們都學過圓周率,而且我們都知道圓周率的名字叫做 $latex \pi$。在學校裡,我們必定學過一條公式,就是如何用一個圓形的半徑去計算它的周長,即是圓周: $latex C=2\pi R$。 上式告訴我們「圓周 $latex C$ 除以兩倍半徑 (即直徑) $latex 2R$ 等於 $latex \pi$」,大概就是我們對 $latex \pi$ 的第一個印象吧!我們在學校也學過,上式中的 $latex \pi$ 是一個常數。換句話說,無論一個圓形有多大,它的圓周 $latex C$ 和直徑 $latex 2R$ 之間的比例都是不變的。 有史記載第一個證明 $latex \pi$ 是常數的人,有說是阿基米德。他使用極限 (limit) 的數學概念,以逼近法把 $latex \pi$ 好像夾三文治一樣夾出來!從而證明它是一個常數,計算出 $latex \pi$ 在 3.1408 和 3.1429 之間,準確至兩個小數位。事實上,$latex \pi$ 是無窮無盡的,即是它擁有無限個小數位,怎樣計也永遠計不完。現代的超級電腦,可以把 $latex \pi$ 計算至萬億個小數位。可是,萬億個小數位距離無限,仍然是無限遠。 我們知道這些都是事實。可是,我們又有沒有想過,為。什。麼? 在這一連幾篇文章中,我會用兩個不同的方法去證明 $latex \pi$ 是一個常數,即是證明所有圓形的圓周率都是一樣的。換句話說,我們會證明所有圓形的圓周與直徑的比例都是一樣的。然後我會介紹其他與圓形和…… Continue reading Pi 是永恆 (一)
Tag: 微積分
三角 X 斜率 X 微積分
上回介紹了三角學的基本函數 sine 和 cosine 與圓形的關係。在下回介紹圓周率 $latex \pi$ 之前,有一項非常重要的結果必須首先介紹。 對於一條任意畫的線,只要它是可以一筆過不斷開地畫出來和沒有尖角的 (嚴謹的數學概念叫連續的和可微分的),那麼我們就可以定義一個叫做斜率的東西: 換句話說,斜率就是描述該線段相對於橫軸的斜度而已,即是講一道斜坡相對於平地有多斜。從上式定義之中,可見斜率以小數或分數來表示的。日常生活中,通常我們都習慣用角度表示斜率,不過這對我們的討論沒有影響。 數學中一個非常重要的技巧就是微積分 (calculus)。微積分是牛頓 (Isaac Newton) 和萊布尼茲 (Gottfried Leibniz) 在同一時期分別獨自發現的。現在我們用的微積分符號是萊布尼茲的版本。如果沒有微積分,今天我們日常生活中各式各樣便利的現代發明都不可能存在。微積分可說是人類史上最重要的數學發現。 故名思義,微積分就是微分和積分的運算。在我們的討論裡不會用到微積分的運算,大家只需要記住:微分就是計算無限短的線段的斜率的方法。至於積分我們會在以後再講。 在上回圖中,我們知道了 sine 和 cosine 函數的圖形。現在我們問,它們的斜率是多少?換句話說,我們問: 有學習過微分運算的讀者,必定能夠立即說出答案: 上式中我們使用了 $latex \textrm{d}$ 代替 $latex \Delta$,以表示無限小的改變。這只是數學慣用符號而已,只要我們記得現在所做的一切都是在趨向無限短的線段上做的,那麼兩個符號在概念上就是一樣的。 現在,讓我們來試試不使用微分運算去找出 sine 和 cosine 的斜率吧!首先考慮上圖。圖中有一半徑為 $latex R$ 的圓形,圓心為 O 點。把 $latex R$ 從水平逆時針畫出一角度 $latex \theta$,連起 O 點和 A 點。再繼續逆時針畫出一細小角度 $latex \Delta\theta$,連起 O 點和 B 點。所以…… Continue reading 三角 X 斜率 X 微積分