如果問愛因斯坦最著名的是什麼,相信十之有九會答 E = mc2。這是他在 1905 年推導出來的質能互換公式,是他發現的相對論的一個直接結果。 愛因斯坦的科學之中,最著名的莫過於相對論。他在 1905 年發表狹義相對論,描述慣性時空裡不同參考系之間的關係、結合質量和能量兩個概念;1916 年發表廣義相對論,把萬有引力、加速度、時空結合為一體,徹底推翻牛頓物理學。 愛因斯坦對物理學的貢獻,絕對足夠好幾座諾貝爾物理獎。然而,愛因斯坦只在 1921 年獲頒過一次諾貝爾物理獎。很多人都以為他的得獎原因必為發現相對論。但原來,他獲獎的原因是解釋了一個我們日常會接觸到,但鮮少留意的現象:光電效應 (photoelectric effect)。 光電效應在高中物理課程裡應有所提及。簡單地說,光電效應就是太陽能電池的原理。光電效應的解釋,涉及一個古老問題:究竟光是什麼? 大家都知道光線的基本特性就是以直線前進和會反射。歷史記載第一個以數學歸納出光線的反射定律的人,就是公元前 3 世紀的古希臘數學家歐幾里德。公元 2 世紀,托勒密亦歸納出光線的折射定律。古希臘人對視覺的本質分為兩派。一派認為眼睛會發射觸手出去,接觸到物件就看得見了(有點毛骨悚然);另一派認為光線是由細小的微粒所構成,視覺是因為這些微粒進入眼睛。今天我們知道後者是正確的,然而在古希臘時期大部分人都不相信光的微粒理論。 17 世紀,牛頓的著名三棱鏡分光實驗,證明了白光是由不同顏色的光組合而成。牛頓認為光的本質是粒子,他試圖以重力解釋光的折射,認為是光粒子穿過不同密度物質時加速而成。19 世紀,拉普拉斯亦相信光是粒子,以牛頓重力理論假設一個連光亦不能逃逸的、質量非常大的星球的存在,其實就是現代科學中的黑洞概念。可是,當拉普拉斯得知光的干涉實驗證明光線是一種波動之後,他就拋棄了他的黑洞理論。其後,愛因斯坦的廣義相對論再次預言黑洞存在,亦已被現代天文觀測證實。 直到 19 世紀,馬克士威導出完整的電磁理論,證明了法拉第認為光線是電磁波的假設正確。1886 年赫茲以實驗證實馬克士威的電磁波動理論、1897 年馬可尼成功進行跨大西洋無線電通訊等,似乎所有證據都支持光線的波動學說。可是,我們從科學史中學習到的,正是大自然不斷顯示給人類的驚奇。 1887 年,赫茲和 Hallwachs 首次觀察到光電效應。他們發現使用可見光或紫外線照射某些物質時,其表面會釋放出陰極射線,即是電子。跟據古典物理學,這是因為電子從光線吸收了足夠能量擺脫物質的吸引力。可是,古典物理學並不能解釋幾個問題: 為何只有超過某數值頻率的光才能把電子從物質釋放出來? 被釋放的電子的能量為何與光線的強度無關,而且有一個上限值?如果電子只是單純地吸收光的能量,那麼光線越亮電子的能量不是應該越高嗎? 為何光線的吸收與電子被釋放之間沒有時間差?電子不是應該吸收了足夠的動能後才能擺脫物質的吸引力嗎? 愛因斯坦在 1905 年發表了論文《Concerning an Heuristic Point of View Toward the Emission and Transformation of Light》使用普朗克的光粒子假設解釋了光電效應。跟據普朗克的理論,光線的能量只由其頻率而定。跟據普朗克公式 E = hν, 其中 E 是光線的能量,ν 是光線的頻率,h…… Continue reading 光電效應:愛因斯坦的諾貝爾
Tag: 光電效應
拋開常識的學者:愛因斯坦 (Albert Einstein)
愛因斯坦 (Albert Einstein, 1879 – 1955) 從小就喜歡思考。有一次,他父親送他一個指南針,他看著永遠指向南北的針,感覺到大自然一定深藏奧祕,引起了他對自然現象的好奇。但其實他的天才並非早早就顯現出來。小時候的愛因斯坦鮮少說出完整的句子,所以父母以為他學習語言有問題;中學老師認為他不可能有出息;大學時期的物理成績並不好,加上他以刺激權威為樂,教授們都不喜歡這個又煩又懶的學生,所以愛因斯坦畢業後一直找不到工作。在他已婚並有所出、且快要山窮水盡的時候,才靠他的好友以人事關係幫他在瑞士專利局找到了一份二級專利員的工作。 他喜歡在早上就把一整天的工作做完,利用整個下午的時間在專利員的辦公室思考物理問題。其一中個最令他著迷的思想就是:「如果一個人能夠跑得跟光一樣快,會看到甚麼樣子的世界?」 愛因斯坦於 1905 年發表狹義相對論 (Special Relativity)。在這之前的十多年中,牛頓的絕對時空觀點早已令科學界困擾多年,牛頓力學體系已經搖搖欲墜了。著名的 Michelson-Morley experiment 的結果顯示並不存在一個「絕對靜止」的參考系「以太」。而且,由 James C. Maxwell 歸納出的電磁方程式組可以推導出光的速度永遠不變、與觀測者的運動狀態無關。這嚴重違反了人類對這個世界的認知,因為我們知道光是一種波動,而波動需要媒介來傳播;就如水波需要水、聲波需要空氣。 在牛頓的宇宙觀裡,時間與空間互不相干。假設你在地鐵裡用速度 $latex u$ 向前跑,你相對於地面的速度 $latex w$ 就會等於地鐵的速度 $latex v$ 加上 $latex u$,即 $latex w=u+v$。 愛因斯坦卻說這條看似理所當然的公式是錯的。如果你在地鐵中打開電筒,電筒發出的光以光速 $latex c$ 相對於地鐵車箱向前跑,但根據相對論,這束光相對於地面的速度不會是 $latex c+v$, 而是 $latex \dfrac{c+v}{1+\dfrac{cv}{c^2}}=c$! 所以光速不變這個概念是非常革命性的。當時大部分人都認為是 Maxwell 的電磁方程式錯了,但愛因斯坦卻不這麼想。他認為,我們常識中對「同時」的理解根本有誤。他發現,在光速不變的前提下,在 A 君眼中同時發生的兩件事,在 B 君看起來就不一定是同時的。換句話說,絕對的「同時」根本不存在!愛因斯坦的相對論解釋了牛頓的古典力學所不能解釋的現象,同時亦把「絕對時間」和「絕對空間」的概念拋棄了。在相對論之中,時間與空間有著微妙的關係,兩者並且結合在一起成為「時空」。任何想把時間與空間想像成獨立分開的兩種東西的概念,都與相對論違背。 本來愛因斯坦預期他的相對論會在科學界引起大地震,可是結果卻靜得可憐,長時間地連一封寄來查詢理論細節的信也沒有。後來發現這是因為世界上根本沒有多少人讀得懂相對論。雖然狹義相對論的數學並非特別深奧難懂,但愛因斯坦突然地拋棄了所謂的「常識」,此舉實在令科學界也摸不著頭腦。 愛因斯坦在發展狹義相對論的同時,亦為物理學的許多分支做了很多開性創性的工作。例如分子運動論、量子論等等,都留有他的足跡。那道舉世聞名的質能關係方程式 $latex E=mc^2$ 也是在此其間導出的,此方程式可謂直接影響了二十世紀的整個科學發展:解釋幅射、太陽能量來源;促成核能、原子彈、氫彈的發展等等。以上他的每一個工作,保守估計都至少值得獲得一個諾貝爾獎。不過,愛因斯坦後來在…… Continue reading 拋開常識的學者:愛因斯坦 (Albert Einstein)